47 research outputs found

    Pricing the Cloud: An Adaptive Brokerage for Cloud Computing

    Get PDF
    Abstract—Using a multi-agent social simulation model to predict the behavior of cloud computing markets, Rogers & Cliff (R&C) demonstrated the existence of a profitable cloud brokerage capable of benefitting cloud providers and cloud consumers alike. Functionally similar to financial market brokers, the cloud broker matches provider supply with consumer demand. This is achieved through options, a type of derivatives contract that enables consumers to purchase the option, but not the obligation, of later purchasing the underlying asset—a cloud computing virtual machine instance—for an agreed fixed price. This model benefits all parties: experiencing more predictable demand, cloud providers can better optimize their workflow to minimize costs; cloud users access cheaper rates offered by brokers; and cloud brokers generate profit from charging fees. Here, we replicate and extend the simulation model of R&C using CReST—an opensource, discrete event, cloud data center simulation modeling platform developed at the University of Bristol. Sensitivity analysis reveals fragility in R&C’s model. We address this by introducing a novel method of autonomous adaptive thresholding (AAT) that enables brokers to adapt to market conditions without requiring a priori domain knowledge. Simulation results demonstrate AAT’s robustness, outperforming the fixed brokerage model of R&C under a variety of market conditions. We believe this could have practical significance in the real-world market for cloud computing. Keywords—CReST; simulation; cloud computing; brokerage I

    A phase II trial of bryostatin-1 administered by weekly 24-hour infusion in recurrent epithelial ovarian carcinoma

    Get PDF
    Bryostatin-1 is a macrocyclic lactone whose main mechanism of action is protein kinase C modulation. We investigated its activity as a weekly 24-h infusion in recurrent ovarian carcinoma. In all, 17 patients were recruited and 11 had chemotherapy-resistant disease as defined by disease progression within 4 months of last cytotoxic therapy. All were evaluable for toxicity and 14 for response. There were no disease responses and the main toxicity was myalgia

    ExDom: an integrated database for comparative analysis of the exon–intron structures of protein domains in eukaryotes

    Get PDF
    We have developed ExDom, a unique database for the comparative analysis of the exon–intron structures of 96 680 protein domains from seven eukaryotic organisms (Homo sapiens, Mus musculus, Bos taurus, Rattus norvegicus, Danio rerio, Gallus gallus and Arabidopsis thaliana). ExDom provides integrated access to exon-domain data through a sophisticated web interface which has the following analytical capabilities: (i) intergenomic and intragenomic comparative analysis of exon–intron structure of domains; (ii) color-coded graphical display of the domain architecture of proteins correlated with their corresponding exon-intron structures; (iii) graphical analysis of multiple sequence alignments of amino acid and coding nucleotide sequences of homologous protein domains from seven organisms; (iv) comparative graphical display of exon distributions within the tertiary structures of protein domains; and (v) visualization of exon–intron structures of alternative transcripts of a gene correlated to variations in the domain architecture of corresponding protein isoforms. These novel analytical features are highly suited for detailed investigations on the exon–intron structure of domains and make ExDom a powerful tool for exploring several key questions concerning the function, origin and evolution of genes and proteins. ExDom database is freely accessible at: http://66.170.16.154/ExDom/

    New insights into the nature of semi-soft elasticity and “mechanical-Fréedericksz transitions” in liquid crystal elastomers

    Get PDF
    The mechanical properties of an all-acrylate Liquid Crystal Elastomer (LCE) with a glass transition of 14±1°C are reported. The highly nonlinear load curve has a characteristic shape associated with semi-soft elasticity (SSE). Conversely, measurements of the director orientation throughout tensile loading instead indicate a “mechanical-Fréedericksz” transition (MFT). Values of the step length anisotropy, r, are independently calculated from the theories of SSE (r= 3.2±0.4), MFT (9.3<r<30.0) and thermally-induced length change (r=3.8±0.5). From simultaneously recorded polarising microscopy textures, the consequences of the above discrepancies are considered. Further, a mechanically-induced negative order parameter is observed. Results show the tensile load curve shape cannot solely be used to determine the underlying physics. Consequently, the LCE properties cannot be fully described by theories of SSE or MFTs alone. This suggests that the theory of LCEs is not yet complete. The conclusions suggest that both the LC order parameter and r must be functions of the mechanical deformation

    TBC1D3, a Hominoid-Specific Gene, Delays IRS-1 Degradation and Promotes Insulin Signaling by Modulating p70 S6 Kinase Activity

    Get PDF
    Insulin/IGF-1 signaling plays a pivotal role in the regulation of cellular homeostasis through its control of glucose metabolism as well as due to its effects on cell proliferation. Aberrant regulation of insulin signaling has been repeatedly implicated in uncontrolled cell growth and malignant transformations. TBC1D3 is a hominoid specific gene previously identified as an oncogene in breast and prostate cancers. Our efforts to identify the molecular mechanisms of TBC1D3-induced oncogenesis revealed the role of TBC1D3 in insulin/IGF-1 signaling pathway. We document here that TBC1D3 intensifies insulin/IGF-1-induced signal transduction through intricate, yet elegant fine-tuning of signaling mechanisms. We show that TBC1D3 expression substantially delayed ubiquitination and degradation of insulin receptor substrate-1 (IRS-1). This effect is achieved through suppression of serine phosphorylation at S636/639, S307 and S312 of IRS-1, which are key phosphorylation sites required for IRS-1 degradation. Furthermore, we report that the effect of TBC1D3 on IRS-1:S636/639 phosphorylation is mediated through TBC1D3-induced activation of protein phosphatase 2A (PP2A), followed by suppression of T389 phosphorylation on p70 S6 kinase (S6K). TBC1D3 specifically interacts with PP2A regulatory subunit B56γ, indicating that TBC1D3 and PP2A B56γ operate jointly to promote S6K:T389 dephosphorylation. These findings suggest that TBC1D3 plays an unanticipated and potentially unique role in the fine-tuning of insulin/IGF-1 signaling, while providing novel insights into the regulation of tumorigenesis by a hominoid-specific protein

    Feline Leukemia Virus and Other Pathogens as Important Threats to the Survival of the Critically Endangered Iberian Lynx (Lynx pardinus)

    Get PDF
    BACKGROUND: The Iberian lynx (Lynx pardinus) is considered the most endangered felid species in the world. In order to save this species, the Spanish authorities implemented a captive breeding program recruiting lynxes from the wild. In this context, a retrospective survey on prevalence of selected feline pathogens in free-ranging lynxes was initiated. METHODOLOGY/ PRINCIPAL FINDINGS: We systematically analyzed the prevalence and importance of seven viral, one protozoan (Cytauxzoon felis), and several bacterial (e.g., hemotropic mycoplasma) infections in 77 of approximately 200 remaining free-ranging Iberian lynxes of the Doñana and Sierra Morena areas, in Southern Spain, between 2003 and 2007. With the exception of feline immunodeficiency virus (FIV), evidence of infection by all tested feline pathogens was found in Iberian lynxes. Fourteen lynxes were feline leukemia virus (FeLV) provirus-positive; eleven of these were antigenemic (FeLV p27 positive). All 14 animals tested negative for other viral infections. During a six-month period in 2007, six of the provirus-positive antigenemic lynxes died. Infection with FeLV but not with other infectious agents was associated with mortality (p<0.001). Sequencing of the FeLV surface glycoprotein gene revealed a common origin for ten of the eleven samples. The ten sequences were closely related to FeLV-A/61E, originally isolated from cats in the USA. Endogenous FeLV sequences were not detected. CONCLUSIONS/SIGNIFICANCE: It was concluded that the FeLV infection most likely originated from domestic cats invading the lynx's habitats. Data available regarding the time frame, co-infections, and outcome of FeLV-infections suggest that, in contrast to the domestic cat, the FeLV strain affecting the lynxes in 2007 is highly virulent to this species. Our data argue strongly for vaccination of lynxes and domestic cats in and around lynx's habitats in order to prevent further spread of the virus as well as reduction the domestic cat population if the lynx population is to be maintained

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore